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Modeling the optical properties of nitride nanostructures – InGaN quan-
tum dots and coupled asymmetric GaN/AlGaN quantum discs 
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III-nitride nanostructures (e.g. InGaN) are particularly interesting as they posses large 
built-in electric fields and high exciton binding energies. By means of 3D numerical simu-
lations using the nextnano³ software, we have calculated the effect of an externally applied 
lateral electric field upon a single InGaN quantum dot (QD), and the electronic states in 
coupled asymmetric GaN/AlGaN quantum discs of MBE grown nanocolumn heterostruc-
tures. Overall, good agreement between the modeling and experimental results was ob-
served. 

 For the QDs, the modeling results support the observation that the quantum confined 
Stark effect (QCSE) has both permanent dipole moment and polarizability components. 
Understanding the QCSE is important from both fundamental physics and device applica-
tions perspectives. Studying the exciton Stark shift permits a greater insight into the QD 
charge distribution, while the QCSE has found applications in ultrafast optoelectronic de-
vices such as electro-optical modulators. Applying an external electric field in the lateral 
direction ‘tilts’ the conduction and valence band edge confinement potentials along the 
direction of the electric field (Fig. 1 (a)) and thus permits control of the exciton wave func-
tion via the QCSE. The QD was modeled as a hexagonal pyramid of diameter 8 nm and 
height 2 nm as shown in Fig. 1 (e) with a uniform indium distribution (20 %) in the QD 
and in the wetting layer. The calculated exciton recombination energy (2.9 eV) agreed well 
with photoluminescence (PL) measurements. The experimental results [1] for the exciton 
peak of the QD with increasing lateral field strength are shown in Fig. 2. As the voltage 
was increased from 0 V to 10 V, the PL peak red shifted and declined in intensity due to a 
reduced electron-hole wave function overlap as the electron and the hole move into oppo-
site directions (Fig. 1 (c) vs. Fig. 1 (e)). 

  

Fig. 1: (a) ‘Tilt’ in the va-
lence band edge due to the 
lateral electric field along 
the x axis. (b) Modeled red 
shift in the photolumines-
cence due to applied bias. (c) 
Visualization of the electron 
(red) and hole (blue) proba-
bility amplitudes (80 %) and 
(d) slice of the hole probabil-
ity amplitude at z=23 nm in 
the presence of 10 MV/m 
lateral electric field. (e), (f) 
Same visualization without 
lateral electric field. 
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